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Abstract—Best merge region growing normally produces 

segmentations with closed connected region objects. Recognizing 

that spectrally similar objects often appear in spatially separate 

locations, we present an approach for tightly integrating best 

merge region growing with nonadjacent region object 

aggregation, which we call hierarchical segmentation or HSeg. 

However, the original implementation of nonadjacent region 

object aggregation in HSeg required excessive computing time 

even for moderately sized images because of the required inter-

comparison of each region with all other regions. This problem 

was previously addressed by a recursive approximation of HSeg, 

called RHSeg. In this paper, we introduce a refined imple-

mentation of nonadjacent region object aggregation in HSeg that 

reduces the computational requirements of HSeg without 

resorting to the recursive approximation. In this refinement, 

HSeg’s region intercomparisons among non-adjacent regions are 

limited to regions of a dynamically determined minimum size. 

We show that this refined version of HSeg can process 

moderately sized images in about the same amount of time as 

RHSeg incorporating the original HSeg. Nonetheless, RHSeg is 

still required for processing very large images due to its lower 

computer memory requirements and amenability to parallel 

processing. We then note a limitation of RHSeg with the original 

HSeg for high spatial resolution images and show how incorpo-

rating the refined HSeg into RHSeg overcomes this limitation. 

The quality of the image segmentations produced by the refined 

HSeg is then compared with other available best merge 

segmentation approaches. Finally, we comment on the unique 

nature of the hierarchical segmentations produced by HSeg. 

 
Index Terms—Image analysis, image classification, image 

region analysis, image segmentation, object detection. 
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I. INTRODUCTION 

MAGE segmentation is the partitioning of an image into 

related sections or regions. For remotely sensed images of 

the Earth, an example is a map that divides the image into 

areas labeled by distinct Earth surface covers such as water, 

snow, and types of natural vegetation, rock formations, crops 

and other man created objects. In unsupervised image 

segmentation, the labeled map may consist of generic labels 

such as region 1, region 2, etc., which may be converted to 

meaningful labels by a postsegmentation analysis. 

Much of the analysis of remotely sensed imagery is 

currently performed on a pixel-by-pixel basis. While this anal-

ysis approach can be satisfactory for some applications, it is 

usually not fully effective in extracting the information con-

tent from remotely sensed imagery, especially from high spa-

tial resolution imagery [1]. The field of object-based image 

analysis (OBIA) has arisen in recent years to address the need 

to move beyond pixel-by-pixel analysis [2]. Image segmen-

tation is the first step for most OBIA approaches, and is a key 

factor in determining the level of performance for these image 

analysis approaches. 

A popular approach for performing image segmentation is 

best merge region growing. This approach was first fully de-

scribed in the archival literature by Beaulieu and Goldberg [3], 

with similar approaches described earlier in conference 

proceedings [4]-[7]. Beaulieu and Goldberg’s hierarchical 

step-wise optimization (HSWO) is an iterative form of region 

growing, in which the iterations consist of finding the most 

optimal or best segmentation with one region less than the 

current segmentation. 

Many variations on best merge region growing have been 

described in the literature. As early as 1994, Kurita [8] de-

scribed an implementation of HSWO that utilized a heap data 

structure [9] for efficient determination of best merges and a 

dissimilarity criterion based on minimizing the mean squared 

error between the region mean image and original image. 

More recently, a series of papers published by the Leibniz 

Institute of Ecological and Regional Development (IOER) 

compared a wide range of image segmentation approaches 

applicable to remotely sensed imagery analysis [10]-[12]. A 

number of these approaches were based on best merge region 

growing, including SEGEN and the segmentation approach 

contained in the eCognition 2.1 software package. 

SEGEN [13] is a relatively pure implementation of best 

merge region growing, optimized for efficiency in perfor-

mance, memory utilization, and image segmentation quality. 
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SEGEN adds a number of (optional) procedures to best merge 

region growing, among them a low-pass filter to be applied on 

the first stage of the segmentation and outlier dispatching on 

the last stage. The latter removes outlier pixels and small 

segments by imbedding them in neighborhood segments with 

the smallest dissimilarity. SEGEN also provides several 

parameters to control the segmentation process. A set of "good 

in average" control values is suggested in [13]. 

A form of best merge region-growing segmentation lies at 

the core of the segmentation approach contained in eCognition 

2.1 [14], [15]. However the process for selecting the best 

merges is much more involved than the relatively 

straightforward evaluation and comparison of region 

dissimilarity functions utilized by HSWO and SEGEN. The 

“multiresolution segmentation” approach of eCognition grows 

regions with the goal of minimizing image object 

heterogeneity by accounting for both local image texture and 

the size of groups of pixels [14]. Smaller objects are merged 

into larger objects during a local optimization procedure that 

minimizes object heterogeneity while constrained by a scale 

parameter limiting object size. A larger scale parameter allows 

more objects to be fused into larger objects. Object 

heterogeneity is determined by weighted color and shape 

parameters [15]. Other segmentation procedures can be 

combined with the multiresolution approach. For example, 

spectral difference segmentation merges neighbor objects that 

fall within a user-defined maximum spectral difference. This 

procedure can be used to merge spectrally similar objects from 

the segmentation produced by the multiresolution approach. 

In complex scenes, such as remotely sensed images of the 

Earth, objects with similar spectral signatures (e.g., lakes, 

agricultural fields, buildings, etc.) appear in spatially separated 

locations. In such cases, it is useful to aggregate these spec-

trally similar but spatially disjoint region objects together into 

groups of regions objects that we call region classes. This 

aggregation may be performed as a post-processing step. 

However, best merge region growing, as exemplified by 

HSWO, may be modified to integrate this aggregation directly 

into the region-growing process. This is the basis of our hier-

archical segmentation (HSeg) algorithm. In contrast to the 

SEGEN and eCognition segmentation approaches, which seek 

to improve on HSWO through elaborations on the merge 

control process, HSeg seeks to improve on HSWO by 

aggregating spectrally similar spatially disjoint region objects. 

Unfortunately, the approach taken for spatially disjoint re-

gion object aggregation requires excessive computing time in 

the original formulation of HSeg. A recursive divide-and-

conquer approach, called recursive HSeg (RHSeg), was pre-

viously developed to overcome this computational problem. In 

this paper, we introduce for the first time a refined imple-

mentation of nonadjacent region object aggregation in HSeg 

that reduces the computational requirements of HSeg without 

resorting to the recursive approximation. The key idea of this 

refinement is that region object aggregation is limited to 

region objects containing no less than a dynamically specified 

minimum number of image pixels. 

The HSWO, HSeg and RHSeg algorithms naturally produce 

a segmentation hierarchy in the form a set of several image 

segmentations at different levels of detail in which the 

segmentations at coarser levels of detail can be produced from 

simple merges of regions at finer levels of detail. This hier-

archy may be useful for applications that require different 

levels of image segmentation details depending on the 

characteristics of the particular image objects segmented. A 

unique feature of a segmentation hierarchy that distinguishes it 

from most other multilevel representations is that the segment 

or region boundaries are maintained at the full image spatial 

resolution for all levels of the segmentation hierarchy. 

This paper is organized as follows. First, we provide a full 

description of the original HSeg and RHSeg algorithms (with 

certain details provided in appendices). We then introduce our 

refinement of HSeg and note how this refinement of HSeg 

impacts RHSeg. The computational demands of HSWO, the 

original HSeg, RHSeg utilizing the original HSeg, the refined 

HSeg algorithm, and RHSeg utilizing the refined HSeg are 

compared for a Landsat Thematic Mapper image. Next, we 

present an approach for evaluation of image segmentation 

quality and describe three data sets to be utilized in our 

evaluation. We then show that the refined HSeg algorithm 

leads to improved flexibility in segmenting moderate- to large-

sized high spatial resolution images. We follow this with a 

comparison of the quality of segmentation-based classification 

results for the refined version of HSeg with similar 

classification results from HSWO, SEGEN and Definiens 8.0 

(a more recent version of the eCognition 2.1 segmentation 

approach). The paper concludes with a discussion of the 

unique nature of the hierarchical set of region class 

segmentations produced by HSeg or RHSeg. 

 

II.  ORIGINAL HSEG AND RHSEG ALGORITHMS 

The general ideas behind the original HSeg and RHSeg 

algorithms were initially described in an early conference 

proceedings paper [16] and a nearly complete description was 

first published in [17]. For the first time in open literature, we 

provide in this section and associated appendices a full 

complete description of these algorithms. 

A. HSeg 

The original HSeg algorithm augments best merge region 

growing with the inclusion of constrained merging of spatially 

non-adjacent regions, as controlled by the input parameter 

Swght. This parameter, which can vary from 0.0 to 1.0, controls 

the relative importance of spatially adjacent and spatially non- 

adjacent region merges. The analysis flow of HSeg is depicted 

in Fig. 1, and the algorithm is as follows: 

1) Initialize the segmentation by assigning each image 

pixel a region label. If a presegmentation is provided, 

label each image pixel according to the 

presegmentation. Otherwise, label each image pixel as a 

separate region. 

2) Calculate a dissimilarity criterion value d between 

all pairs of regions. (If Swght.= 0.0, the dissimilarity  

 



Published in IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 11, pp. 4454-4467. 

 

3 

No Yes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Analysis flow of the HSeg algorithm. 

criterion only needs to be calculated between all pairs of 

spatially adjacent regions.) 

3) Set the merge threshold Tmerge equal to the smallest 

dissimilarity criterion value d between pairs of spatially 

adjacent regions. 

4) Merge pairs of spatially adjacent regions with d = Tmerge. 

5) If Swght > 0, merge pairs of non-adjacent regions with d ≤ 

Swght∙Tmerge. 

6) Output the segmentation result if the output criterion is 

satisfied (more on this later). 

7) Stop if convergence has been achieved. Otherwise, go to 

step 8. Convergence is normally considered to be 

achieved when a specified number of regions has been 

reached (by default, two regions). 

8) Update the dissimilarity criterion values d for the 

regions affected by merges, and return to step 3. 

Since segmentation results with a large number of regions 

are usually severely oversegmented and thus not of interest, 

HSeg does not normally output the hierarchical segmentation 

results until the number of regions reaches a user specified 

value (by default, 255 regions). After that point, HSeg 

normally outputs a subsequent hierarchical segmentation 

result at the iteration just prior to the iteration at which any 

region would be involved in more than one merge since the 

last result was output. Alternatively, HSeg can be set to output 

hierarchical segmentation at a user specified list of number of 

regions or list of merge thresholds. 

One can select from a number of criteria for evaluating how 

dissimilar one region is from another in HSeg. These 

dissimilarity criteria include criterion based on vector norms, 

minimizing the mean square error difference or the change in 

entropy between the region mean image and the original 

image, among others (see [18]). We describe in Appendix A 

the dissimilarity criteria used in tests reported in this paper. 

When Swght = 0.0, spatially nonadjacent region merges (step 

5) are not performed, and HSeg reduces to straightforward 

best merge region growing. This serves as our implementation 

of HSWO. With Swght = 1.0, merges between spatially adjacent 

and spatially nonadjacent regions are given equal priority. For 

values of Swght between 0.0 and 1.0, spatially adjacent merges 

are given priority over spatially nonadjacent merges by a 

factor of 1.0/Swght. Thus for Swght > 0.0, region objects (i.e., 

spatially connected regions) may be aggregated into spatially 

disjoint groupings that we call region classes. 

We noted in the introduction that Kurita [8] showed that a 

heap data structure [9] can be utilized for an efficient imple-

mentation of HSWO. We use a modified heap structure in our 

implementation of HSeg. The location of each region object is 

tracked in the heap data structure through a heap_index value. 

The standard heap algorithms were modified to properly 

update the region object heap_index value every time the heap 

is adjusted. This heap_index is used to quickly find the 

location in the heap data structure of the regions objects whose 

heap position needs to be updated. 

What regions are considered to be spatially adjacent to other 

regions depends on the definition of a neighborhood 

relationship. For our purposes, we use the usual n-nearest 

neighbor concept to define spatial adjacency for image pixels, 

most commonly 4 nearest neighbors (north, south, east, west; 

referred to as 4 nn) or 8 nearest neighbors (including the 

diagonal pixels; referred to as 8 nn). Regions adjacent to a 

region are the union of the region memberships of the 

neighbors of the pixels on the boundary of that region. 

B. RHSeg 

The approach taken for implementing nonadjacent region 

object aggregation in this original version of HSeg requires 

excessive computing time. This is because the inclusion of 

spatially nonadjacent region merging requires the intercom-

parison of each region to every other region. Since HSeg is 

normally initialized with single pixel regions, this results in a 

combinatorial explosion of intercomparisons in the initial 

stage of the algorithm. In contrast, HSWO requires that each 

image pixel be initially compared only with its neighboring 

pixels. The RHSeg approximation to HSeg was devised to 

overcome this computational problem. 

1) Initialize the 

segmentation 

2) Calculate a dissimilarity criterion, 

d, between all pairs of regions 

3) Set the merge threshold, 

Tmerge, equal to the smallest 

d between pairs of spatially 

adjacent regions. 

4) Merge pairs 

of spatially 

adjacent regions 

with d = Tmerge 

5) Merge pairs of 

spatially nonadjacent 

regions with d ≤ 

Swght∙Tmerge 

7) Convergence? 

8) Update d for region 

pairs affected by 

merges 

Input 

image 

6) Output result 

if the output 

criterion is 

satisfied. 

End 
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RHSeg recursively subdivides the image data into subsec-

tions, and then applies HSeg to the subsections of data that are 

small enough to be processed relatively quickly. However, 

RHSeg’s subdivision and subsequent recombination of the 

segmentation results can lead to processing window artifacts 

in which region boundaries are aligned with the processing 

window boundaries. This is because some region-merging 

decisions made by RHSeg in one processing window may 

have been nonoptimal due to the absence of knowledge 

concerning regions in other processing windows. RHSeg 

includes a provision to find and split out pixels that may have 

been inappropriately merged into a particular region at deeper 

levels of recursion, and to remerge such pixels into a more 

appropriate region utilizing the global information available at 

higher levels of recursion. 

By nature of its recursive formulation, RHSeg has a 

straightforward coarse-grained parallel implementation which 

was described in [17]. We provide a full description of RHSeg 

in Appendix B, including the processing window artifact 

elimination step. 

 

III. REFINING HSEG BY LIMITING NONADJACENT REGION 

OBJECT AGGREGATION TO OBJECTS OF A MINIMUM SIZE 

We introduce in this paper a new refinement of HSeg that 

significantly reduces the computational requirements of the 

algorithm. The refinement limits the nonadjacent region- 

merging (region object aggregation) aspect of the HSeg 

algorithm to merging region objects containing at least a 

dynamically specified minimum number of image pixels Pmin. 

Such region objects are called “large regions,” and the number 

of such regions is designated as Nlarge. The value of Pmin is set 

initially to the smallest value such that Nlarge ≤ Smax, where Smax 

is a user settable program parameter (defaulted to 1024 

regions). In contrast, the original version of HSeg included all 

regions, regardless of size, in the nonadjacent region merging 

step of the algorithm. 

While this simple refinement of HSeg works well in and of 

itself for many images, we have noted in our tests some cases 

where the image segmentation quality adversely suffers from 

strict adherence to the requirement that Nlarge ≤ Smax. To 

address this problem, we introduce the user settable parameter 

Smin (defaulted to 512 regions), and allow Nlarge to rise above 

Smax in certain cases where keeping it below would result in 

Nlarge < Smin. However, Nlarge is allowed to drop below Smin if 

forcing it to be no less than Smin would result in Nlarge > 6∙Smax. 

The goal is to find a value for Pmin that keeps Nlarge as close as 

possible to Smax, and preferably less than Smax. This is all 

mediated through setting the value of Pmin. 

The algorithm is as follows: The initial iterations of HSeg 

are treated as a special case because HSeg is normally initiated 

with each image pixel as a separate region, making it 

impossible to find a value for Pmin such that 2 < Nlarge ≤ 6∙Smax 

(except for very small images). Therefore, initially, all 

identical spatially adjacent pixels (those with zero 

dissimilarity value, if any), are merged to form multiple pixel 

regions. Then, additional iterations of spatially adjacent region 

merges are performed as necessary until a value for Pmin can 

be found that results in 2 < Nlarge ≤ Smax. After HSeg is 

initialized this way, HSeg continues with alternating spatially 

adjacent and spatially nonadjacent region merges with the 

value of Pmin set as follows: initially set Pmin to the smallest 

value such that Nlarge ≤ Smax. If this results in Nlarge < Smin, the 

value of Pmin is reduced by one (unless it is already equal to 

one) and the value of Nlarge with this new value of Pmin is 

determined. If this new value of Pmin results in Nlarge > 6∙Smax, 

the value of Pmin is incremented back up by one. Finally, if this 

later adjustment results in Nlarge < 2, the value of Pmin is again 

reduced by one, regardless of whether or not this results in 

Nlarge > 6∙Smax. 

For processing efficiency, the value of Pmin is not checked 

for adjustment every iteration. Whenever the value of Pmin is 

changed, “local” values of Smax and Smin are determined (call 

them smax and smin), and the value of Pmin is checked only when 

the number of “large regions” becomes less than smin (and the 

value of Pmin is more than one) or becomes larger than smax. 

This prevents performing unnecessary computations when it is 

unlikely that the value of Pmin would be changed. 

The values of smin and smax are recalculated whenever Pmin is 

checked for adjustment. For smin, let smin = Nlarge. However, if 

Nlarge ≤ Smax, compute temp = Smax - 2∙( Smax – Nlarge), and if 

temp > Smin, let smin = temp. If smin > Nr (the current number of 

regions, both “large” and “small”), let smin = Nr. Compute 

maxSmin = Smax - 0.05∙(Smax - Smin). If smin > maxSmin, let smin = 

maxSmin. For smax, if Nlarge > Smax, let smax = Nlarge. Otherwise let 

smax = Smax. 

Like the original versions, the refined version of HSeg 

includes an option for small region merge acceleration (see 

Appendix A). 

 

IV. COMPARISON OF THE COMPUTATIONAL DEMANDS OF 

THE ORIGINAL AND REFINED VERSIONS OF HSEG 

Timing tests comparing the original and refined versions of 

HSeg were performed on portions of a six-band Landsat 

Thematic Mapper data set which was collected on May 28, 

1999 from over MD and VA. These tests also include timing 

tests for RHSeg incorporating either the original or refined 

version of HSeg. The square root of the Band Sum Mean 

Squared Error (BSMSE
½
)

 
dissimilarity criterion was utilized 

with 8 nn neighborhoods and no small region merge 

acceleration (see Appendix A). The computer used for all 

tests, except for the parallel processing tests, has an AMD 

Phenom II 920 2.8-GHz 64-b Quad-Core processor with 8192- 

MB RAM. The parallel tests were performed on the Discover 

system at the NASA Center for Climate Simulation (NCCS). 

The nodes utilized on the Discover system consist of 2 quad-

core 2.8 GHz Intel Xeon Nehalem processors. 

Table I compares the wall clock run times for the original 

and refined versions of HSeg. For very small images (such as 

64 × 64 pixels), the wall clock run times for the two versions 

are similar. As the image sizes get larger, the run times of the 

two versions diverge more and more until, at an image size of  
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 TABLE I 
COMPARISON OF WALL CLOCK RUN TIMES FOR THE ORIGINAL 

AND REFINED VERSIONS OF HSEG. TIMES IN MIN:SEC. 

 Original version of HSeg Refined version of HSeg 

Image Size Swght 

0.2 0.5 1.0 0.2 0.5 1.0 

64×64 <0:01 0:02 0:09 0:02 0:02 0:01 

128×128 0:06 0:39 3:05 0:08 0:09 0:09 

256×256 3:38 19:20 71:24 0:18 0:21 0:46 

512v512 46:48 363:29 > 1000:00 0:57 1:07 3:05 

TABLE II 

COMPARISON OF WALL CLOCK RUN TIMES FOR HSWO, THE 

REFINED VERSION OF HSEG, AND RHSEG INCORPORATING 

THE REFINED VERSION OF HSEG. TIMES IN MIN:SEC. 

 HSWO HSeg RHSeg 

Image 
Size 

Swght 

0.0 0.2 0.5 1.0 0.2 0.5 1.0 

512 

×512 
0:16 0:57 1:06 2:57 1:181 1:361 3:181 

1024 

×1024 
1:28 5:23 3:56 7:51 3:371 4:261 8:491 

2048 

×2048 
14:05 80:37 33:19 32:49 13:40 15:09 24:46 

4096 

×4096 
* * * * 84:12 67:20 98:15 

6912 

×6528 
* * * * 255:35 185:02 303:35 

1
 With Lr = 2 (default is Lr = 1 for 512×512 and 1024×1024 images). 

* Test could not be run due to computer RAM memory limitations. 

NOTE: RHSEG was run with the default values for Lr = 2, 3, and 4 for image 

sizes 2048×2048, 4096×4096 and 6912×6528, respectively. 

TABLE III 

COMPARISON OF WALL CLOCK RUN TIMES FOR RHSEG INCORPORA-

TING THE ORIGINAL AND REFINED VERSIONS OF HSEG. TIMES IN 

MIN:SEC. 

 RHSeg with original HSeg RHSeg with refined HSeg 

Image Size 
Swght 

0.2 0.5 1.0 0.2 0.5 1.0 

1024×1024 2:12 5:01 11:58 3:37 4:26 8:49 

2048×2048 10:40 21:58 50:10 13:40 15:09 24:46 

NOTE: RHSeg with the original version of HSeg was run with Lr = 6 and 7 

for image sizes 1024×1024 and 2048×2048, respectively. RHSeg with the 

refined version of HSeg was run with Lr = 2 for both image sizes. 

256 × 256 pixels, the refined version of HSeg is from 12 to 

over 93 times faster than the original version. This difference 

in run times becomes even more pronounced for larger 

images. For example, for Swght = 1.0, the refined version of 

HSeg took less than 3 minutes to complete for a 512 × 512 

image, while the original version did not complete even after 

running for over 16 h. 

 

TABLE IV 
COMPARISON OF THE WALL CLOCK RUN TIMES FOR RHSEG 

INCORPORATING THE REFINED VERSION OF HSEG RUN WITH ONE CPU 

VERSUS THE SAME CONFIGURATION OF RHSEG RUN WITH MULTIPLE 

CPUS ON THE NCCS DISCOVER CLUSTER (SEE TEXT). RUN TIMES IN 

MIN:SEC. 

 

RHSeg 

16 CPUs for 2048×2048, 
64 CPUs for 4096×4096 

256 CPUs for 6912×6528 

RHSeg 

1 CPU 

Image 

Size 
Lr 

Swght 

Lr 

Swght 

0.2 0.5 1.0 0.2 0.5 1.0 

2048 

×2048 

3 

4 
5 

2:37 

1:54 
1:41 

4:32 

4:04 
2:54 

13:55 

13:03 
6:26 

2 

3 

13:40 

20:02 

15:09 

24:16 

24:46 

45:26  

4096 

×4096 

4 

5 

6 

5:48 

3:23 

2:17 

10:46 

7:29 

4:11 

35:20 

23:57 

10:32 

3 

4 

84:12 

87:57 

67:20 

124:39 

98:15 

180:11 

6912 
×6528 

5 

6 

7 

3:35 

3:36 

2:08 

15:58 

7:38 

4:10 

55:31 

26:34 

9:15 

4 
5 

255:35 
437:54 

185:02 
515:18 

303:35 
460:15 

Table II compares the wall clock run times for refined 

version of HSeg and RHSeg incorporating the refined version 

of HSeg. Also included in this table are run times for HSWO 

(actually HSeg run with Swght= 0.0) that show the effect of the 

region aggregation step on run time. These timing results 

show that, with the new refinement, the wall clock run times 

for HSeg are now similar to (less than a factor of two 

different) the run times for RHSeg for image up through 1024 

× 1024 in size. Note that, while RHSeg can process images as 

large as a full Landsat scene (the 6912 × 6528 image size), 

HSeg (and HSWO) ran out of RAM memory for the tests with 

images larger than 2048 × 2048. Additionally, the HSeg 

processing times for the 2048 × 2048 image size was longer 

than the RHSeg processing times due to page swapping. 

Table III compares the wall clock run times for RHSeg 

incorporating the original version of HSeg and RHSeg 

incorporating the refined version of HSeg. These results show 

that the wall clock run times for these two instances of RHSeg 

are similar. 

Table IV compares the wall clock run times for RHSeg 

incorporating the refined version of HSeg on a parallel cluster 

versus the same configuration of RHSeg on a single processor. 

These results show that RHSeg is still a useful approximation 

of HSeg because its straightforward coarse-grained parallel 

implementation provides substantial run time improvements. 

Using 256 CPUs, the parallel version of RHSeg provides an 8 

to 122 times speed up versus corresponding (same Lr) 1 CPU 

RHSeg runs on the full Landsat scene (6912 × 6528). Note 

that the number of recursive levels (Lr) that produces the 

smallest processing time differs between the one-CPU and 

multiple- CPU cases. This is because using a larger number of 

recursive levels more effectively exploits parallel processing. 
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V. EVALUATION OF IMAGE SEGMENTATION QUALITY 

In order to demonstrate the effectiveness of the new 

versions of HSeg and RHSeg, we now turn to the problem of 

evaluating image segmentation quality. We have chosen to 

assess segmentation results using a region-based classification 

approach [19]. The first step is to perform a pixelwise 

classification of an image data set. Then, a region classifica-

tion is obtained by assigning each spatially connected region 

from the segmentation result to the most frequently occurring 

class within the region. While this is called the majority vote 

rule in [19], this is a plurality vote (PV) rule by a strict 

definition of the terms. The PV term is used herein. 

We have chosen to create our pixelwise classification using 

the support vector machine (SVM) classifier. This classifier 

was chosen because it has been shown to perform extremely 

well in classifying high-dimensional data (such as hyper-

spectral data) with a limited number of training samples [20]. 

The particular SVM classifier utilized is the multiclass pair-

wise (one versus one) SVM classifier, with the Gaussian radial 

basis function (RBF) kernel, by means of the LIBSVM library 

[21]. 

We now describe the hyperspectral data sets used in our 

tests, and how we utilize the associated reference data for 

training and testing. The spectral angle mapper (SAM) 

criterion was used in HSeg, since this criterion is widely 

accepted for hyperspectral analysis (see Appendix B). We also 

used 4 nn neighborhoods in our tests since we found that our 

results were better with 4 nn than with 8 nn neighborhoods. 

A. Washington DC Mall HYDICE Hyperspectral Data Set 

The Washington DC Mall hyperspectral data set was 

obtained through Purdue University’s MultiSpec freeware 

project [22]. This data set was acquired with the HYDICE 

sensor, which collected data in the 0.4-2.4-m region of the 

visible and infrared spectrum. The data set analyzed contains 

191 spectral bands with spatial dimensions of 307 columns 

and 1208 rows and ground spatial resolution of 1.5 m/pixel. 

The ground reference data consist of seven classes of interest: 

roofs, street, graveled path, grass, trees, water and shadow. A 

three-band false color image and the reference data are shown 

in Fig. 2. 

Two disjoint training data sets were created by randomly 

selecting pixels from the complete ground reference data. The 

SVM training set was used to train the SVM classifier, and the 

segmentation training set was used for segmentation algorithm 

parameter optimization (as discussed in a following section). 

Table V lists the number of pixels in the training and test sets 

for each ground cover class. The SVM training set was 

selected with the somewhat arbitrary goal of selecting about 

200 pixels for each class (with more for the classes with larger 

numbers of reference pixels), and roughly the same number 

for the segmentation algorithm training set. Since this training 

set selection process worked well with this and the other 

hyperspectral data sets, it was not further optimized as it is not 

a focus of this study. 

 

   

 (a) (b) 

 Roofs  Graveled path  Trees  Water 

 Street  Grass  Shadows  Unlabeled 

(c) 

Fig. 2. (a) Three-band false color image of the Washington DC Mall 

hyperspectral data set (RGB = bands 60, 27 and 17). (b) Reference 

data. (c) Color key. The training data for the SVM classifier and 

segmentation optimization are randomly selected pixels from the 

reference data. 

B. University of Pavia ROSIS Data Set 

The University of Pavia data set was recorded by the 

Reflective Optics System Imaging Spectrometer (ROSIS) over 

the University of Pavia, Pavia, Italy. The image is 610 × 340 

pixels in size, with a spatial resolution of 1.3 m. The ROSIS 

sensor has 115 spectral channels, with a spectral range of 

0.43-0.86 µm. The 12 noisiest channels were removed, and the 

remaining 103 spectral bands were used in this experiment. 

See [19] and [23] for more details on this data set. The 

reference data contain nine ground cover classes: asphalt, 

meadows, gravel, trees, metal sheets, bare soil, bitumen, 

bricks and shadows. A three-band false color image of this 

data set and the ground reference data are shown in Fig 3. 

 



Published in IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 11, pp. 4454-4467. 

 

7 

TABLE V 
NUMBER OF PIXELS IN THE SVM TRAINING, SEGMENTATION TRAINING AND TEST SETS FOR THE WASHINGTON DC MALL DATA SET. 

 Roofs Street Graveled Path Grass Trees Water Shadow Total 

SVM Training 297 176 212 398 197 260 211 1751 

Segmentation Training 317 216 212 474 209 275 234 1937 

Segmentation Testing 28361 18783 1603 42527 18000 24956 1715 135945 

Ground Reference 28975 19175 2027 43399 18406 25491 2160 139633 

 

   

 (a) (b) 

 Asphalt  Bare soil  Gravel  Bricks  Metal sheets 

 Meadows  Bitumen  Trees  Shadows  Unlabeled 

(c) 

Fig. 3. (a) Three-band false color image of the University of Pavia 

hyperspectral data set (RGB = bands 56, 33 and 13). (b) Reference 

data. (c) Color key. The training data for the SVM classifier and 

segmentation optimization are randomly selected pixels from the 

reference data. 

   

 (a) (b) 

 
Corn- 

no till 
 Grass/trees  

Soybeans- 

no till 
 Wheat 

 
Corn-

min till 
 

Grass/pasture-

mowed 
 

Soybeans-

min till 
 Woods 

 Corn  Grass/pasture  
Soybeans-

clean till 
 

Bldg-Grass-

Trees-Drives 

 Alfalfa  Oats  
Hay-
windrowed 

 
Stone-steel 
towers 

(c) 

Fig. 4. (a) Three-band false color image of the Indian Pines 

hyperspectral data set (RGB = bands 47, 24 and 14). (b) Reference 

data. (c) Color key (black designates unlabeled). The training data for 

the SVM classifier and segmentation optimization are randomly 

selected pixels from the reference data. 

As with the Washington DC Mall HYDICE data set, SVM 

and segmentation training sets were created by randomly 

selecting pixels from the complete ground reference data. The 

SVM training set was selected with the somewhat arbitrary 

goal of selecting about 100 pixels for each class (with more 

for the very large Meadows class), and about double that 

number for the segmentation training set. 

C. Indian Pines AVIRIS Hyperspectral Data Set. 

The Indian Pines hyperspectral data set was obtained 

through Purdue University’s MultiSpec freeware project [22]. 

This data set was acquired by the AVIRIS sensor over the 

vegetated Indian Pines site in Northwestern Indiana. The 

image has spatial dimensions of 145 by 145 pixels, with a 

ground spatial resolution of 20 m/pixel. Twenty water 

absorption bands (104-108, 150-163, and 220) were removed 

(per [24]), resulting in a 200-band image that was used in our 

experiments. The ground reference data contain 16 classes of 

interest, which represent mostly different types of crops. A 

three-band false color image and the reference data are shown 

in Fig. 4. 

As with the previous two data sets, SVM and segmentation 

training sets were created by randomly selecting pixels from 

the reference data. The number of pixels available for the 

training set was limited by the small number of reference 

pixels available for some classes. For classes containing less 

than 100 reference pixels, roughly 1/3 each were selected for 

SVM training, segmentation algorithm training and testing. 

For the other classes, roughly 50 pixels were selected from 

each class for SVM training and segmentation training and the 

remainder were utilized for testing (for two classes with over 

1000 reference pixels, roughly 100 pixels were selected for the 

training sets). 

For all three data sets, the optimal parameters for the SVM 

classifier were obtained by fivefold cross validation on the 

respective SVM training sets. For the University of Pavia data 

set, the optimal values for C and  were found to be 32 and 

0.5, respectively. C = 512 and  = 2
-9

 were found to be optimal 

for the Indian Pines data set and C = 32768 and  = 2
-11

 were 

found to be optimal for the Washington DC Mall data set. The 

parameter C controls the amount of penalty during the SVM 

optimization [25] and parameter  controls the spread of the 

Gaussian RBF kernel. 

The PV classifications for all segmentation approaches were 

evaluated in terms of Overall Accuracy (OA), Average 

Accuracy (AA) and the kappa coefficient (). OA is the 

percentage of correctly classified pixels, AA is the mean of the 

class-specific accuracies, and  is the percentage of agreement 
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(correctly classified pixels) corrected by the number of 

agreements that would be expected purely by chance [26]. 

 

VI. IMPLICATIONS OF THE HSEG REFINEMENT  

ON IMAGE SEGMENTATION QUALITY 

Subdivision of the image data down to subsections in the 

range of 1000-4000 pixels was necessary for the original 

version of HSeg, whereas subdivision down to sub-sections in 

the range of 250 000-1 000 000 pixels (e.g., image subsections 

up to about 1024 × 1024 pixels) is all that is required for the 

refined version of HSeg. We show here that this difference in 

size of the smallest subsections processed in the RHSeg 

approximation leads to improved flexibility in performing 

image segmentations. 

High spatial resolution images, such as the Washington DC 

Mall HYDICE data set, contain many small region objects, 

which may, or may not, be significant, depending on the goals 

of the analysis. If these small regions objects are not 

significant, small region merge acceleration (favored merging 

of regions smaller than Пmin pixels, see Appendix A) may be 

used in either the original and refined versions of HSeg or in 

RHSeg incorporating either the original or refined version of 

HSeg without adversely affecting the results. This can be seen 

in the results reported in Table VI comparing the plurality vote 

classification accuracies obtained for RHSeg incorporating the 

original version of HSeg to those obtained by the refined 

version of HSeg. 

However, if small region objects are significant for the 

particular analysis application, small region merge 

acceleration should not be utilized. Table VII shows the 

results obtained for RHSeg incorporating the original version 

of HSeg and the results obtained for the refined version of 

HSeg without small region merge acceleration. While the 

results for the refined version of HSeg were not adversely 

affected, not using small region merge acceleration had 

disastrous effects on the results obtained with RHSeg 

incorporating the original version of HSeg. This was because 

processing efficiency required that the initial processing 

windows contain only 1600 pixels, forcing RHSeg to return 

results for no more than 1600 region classes at the top level of 

recursion. The implication of this is one has much improved 

flexibility in using RHSeg incorporating the refined version of 

HSeg to segment large images than one had using RHSeg 

when it incorporated the original version. 

 

VII. COMPARISON OF THE EFFECTIVENESS OF REFINED 

HSEG TO HSWO AND OTHER IMAGE 

SEGMENTATION APPROACHES 

Presented here is a comparison of the effectiveness of the 

refined version of HSeg to HSWO, SEGEN and the segmenta-

tion approach from Definiens 8.0 in segmenting hyperspectral 

data sets. Here, we compare the effectiveness of the 

segmentation approaches by comparing the classification 

accuracies obtained by the region-based PV classification 

approach described earlier. 

A. Parameter Optimization 

The segmentation training sets were used to optimize 

parameters for the SEGEN, Definiens 8.0, HSWO, and HSeg  

 

TABLE VI 
WITH SMALL REGION MERGE ACCELERATION. A COMPARISON OF CLASSIFICATION ACCURACIES ON THE WASHINGTON DC MALL HYPERSPECTRAL 

DATA SET FOR RHSEG INCORPORATING THE ORIGINAL VERSION OF HSEG AND FOR THE REFINED VERSION OF HSEG WITH THE REGION PV 

METHOD AND VARIOUS VALUES OF SWGHT. CLASSIFICATION ACCURACIES IN PERCENTAGE IN TERMS OF OA, AA, AND KAPPA COEFFICIENT (). 

 RHSeg incorporating the original HSeg* + PV Refined version of HSeg + PV 

Swght 0.1 0.2 0.3 0.5 1.0 0.1 0.2 0.3 0.5 1.0 

# of  region 

objects 
8721 25012 46835 73509 184082 120004 102905 39125 43685 44522 

OA 96.53 96.92 96.86 96.42 96.13 96.52 96.58 96.72 96.84 96.89 

AA 93.76 95.22 96.21 95.73 95.81 95.61 95.49 94.99 95.75 96.01 

 95.59 96.10 96.02 95.48 95.11 95.60 95.66 95.85 96.00 96.07 

* Пmin matched to the maximum value of Pmin observed for HSeg: For Swght = 0.1, Пmin = 72, for Swght = 0.2, Пmin = 67, for Swght = 0.3, Пmin = 54, 

for Swght = 0.5, Пmin = 36, for Swght = 1.0, Пmin = 17. 

TABLE VII 
WITHOUT SMALL REGION MERGE ACCELERATION. A COMPARISON OF CLASSIFICATION ACCURACIES ON THE WASHINGTON DC MALL HYPER-

SPECTRAL DATA SET FOR RHSEG INCORPORATING THE ORIGINAL VERSION OF HSEG, AND THE REFINED VERSION OF HSEG WITH THE REGION PV 

METHOD AND VARIOUS VALUES OF SWGHT. CLASSIFICATION ACCURACIES IN PERCENTAGE IN TERMS OF OA, AA, AND KAPPA COEFFICIENT (). 

 RHSeg incorporating the original HSeg* + PV Refined version of HSeg + PV 

Swght 0.1 0.2 0.3 0.5 1.0 0.1 0.2 0.3 0.5 1.0 

# of  region 

objects 
3525 5685 1970 21442 111445 61369 38106 44080 55282 60267 

OA 74.10 85.18 77.95 82.15 96.43 96.95 96.88 96.58 96.65 96.72 

AA 66.37 74.93 58.57 74.29 95.87 96.17 96.06 95.86 95.57 95.64 

 67.34 81.11 71.01 77.46 95.48 96.14 96.05 95.67 95.76 95.86 

* Пmin = 0. 
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segmentation algorithms. For SEGEN, the set of control 

parameters was varied to find the highest kappa coefficient () 

value (found to be highly correlated with overall classification 

accuracy). The dispatch outliers stage of SEGEN was found to 

improve the results for all three data sets, but the low-pass 

filter was found to be helpful only on the University of Pavia 

data set. The Definiens 8.0 segmentation parameters for the 

multiresolution approach were optimized with the goal of 

creating image objects detailed enough to resolve the features 

identified in the pixel-based classification while not 

oversegmenting. The scale parameter and the relative 

influence of shape/color were systematically adjusted to derive 

a segmentation that produced an accurate classification at a 

scale that resolved the features classified in the pixel-level 

classification. In addition, the spectral difference segmentation 

algorithm was used to merge spectrally similar objects from 

the multiresolution segmentation result. The level of 

segmentation detail was optimized for HSWO and HSeg by 

selecting the hierarchical level that gave the highest 

classification accuracy on the segmentation training set. The 

Swght parameter was also similarly optimized for HSeg, the PV 

classification was performed over the region object map 

instead of the region class map, and we checked whether not 

small region merge acceleration improved the segmentation 

results. We used 4 nn connectivity for all segmentation 

approaches since we found that this generally produced the 

best PV classification accuracy results. 

B. PV Classification Results 

Tables VIII-X compare the results on each data set of our 

analysis for the pixelwise SVM classifier and PV over the 

regions produced by the various segmentation approaches. 

The segmentation approaches generally produced some 

improvement over the pixelwise SVM classifier. 

The SEGEN+PV case produced the best results for the 

Washington DC Mall data set, with HSWO+PV and 

HSeg+PV (without small region merge acceleration) virtually 

tied for second. Note that since a very small weight (Swght = 

0.1) was given to non-adjacent region merges in the HSeg 

segmentation, the HSeg+PV and HSWO+PV classification 

results came out very similar. 

The HSeg+PV (with small region merge acceleration) case 

produced the best results for the University of Pavia data set, 

with the SEGEN+PV case a close second. Note that the 

HSWO+PV result has much lower classification accuracies 

than the HSeg+PV result and that a higher weight (Swght = 0.3) 

was given to nonadjacent region merges in the HSeg 

segmentation. 

The SEGEN+PV case produced the best results for the 

Indian Pines data sets, with the D8+PV and HSeg+PV cases at 

a close tie for second. Note that even though a very small 

weight (Swght = 0.1) was given to nonadjacent region merges in 

the HSeg segmentation, the HSeg+PV classification 

accuracies are much higher than the HSWO+PV accuracies. 

Figs. 5-7 show the classification maps produced for selected 

cases. Fig. 5 shows the SEGEN+PV and HSeg+PV 

 

TABLE VIII 
COMPARISON OF CLASSIFICATION ACCURACIES ON THE WASHINGTON 

DC MALL HYPERSPECTRAL DATA SET FOR PER-PIXEL SVM AND WITH 

THE REGION PV METHOD FOR  DEFINIENS 8.0 (D8), SEGEN, HSWO, 

AND THE REFINED VERSION OF HSEG. HSEG WAS PERFORMED 

WITHOUT SMALL REGION MERGE ACCELERATION. CLASSIFICATION 

ACCURACIES IN PERCENTAGE IN TERMS OF OA, AA, KAPPA 

COEFFICIENT () AND CLASS-SPECIFIC ACCURACIES. HIGHEST VALUES 

AND VALUES WITHIN 0.15% OF HIGHEST VALUE ARE BOLDED IN EACH 

CATEGORY. 

 
SVM D8+PV 

SEGEN 

+ PV 
HSWO+PV 

HSeg+PV 

Swght = 0.1 

# of region 

objects 
NA 22313 23731 53146 61369 

OA 95.76 96.87 97.13 96.99 96.95 

AA 95.54 95.50 95.31 96.02 96.17 

 94.64 96.04 96.37 96.19 96.14 

Roofs 91.30 93.80 94.00 93.94 93.90 

Street 94.48 95.57 96.22 95.45 95.38 

Graveled 

Path 
94.82 89.58 88.65 91.83 93.20 

Grass 97.49 98.24 98.66 98.43 98.30 
Trees 96.45 96.78 96.71 96.78 96.79 

Water 98.39 99.70 99.91 99.73 99.72 

Shadow 95.86 94.81 93.06 95.98 95.86 

# bolds 1 1 7 4 3 

TABLE IX 
COMPARISON OF CLASSIFICATION ACCURACIES ON THE UNIVERSITY OF 

PAVIA HYPERSPECTRAL DATA SET FOR PER-PIXEL SVM AND WITH THE 

REGION PV METHOD FOR DEFINIENS 8.0 (D8), SEGEN, HSWO, AND 

THE REFINED VERSION OF HSEG. HSEG WAS PERFORMED WITH SMALL 

REGION MERGE ACCELERATION. PERCENTAGE CLASSIFICATION 

ACCURACIES IN TERMS OF OA, AA, AND KAPPA COEFFICIENT (). 

 SVM D8+PV 
SEGEN 

+PV 
HSWO 

+PV 
HSeg+PV 
Swght = 0.3 

# of region objects NA 4501 4019 74279 30021 

OA 89.03 97.54 98.09 95.38 98.35 

AA 89.56 97.26 97.95 95.50 98.15 

 85.46 96.71 97.45 93.83 97.79 

TABLE X 
COMPARISON OF CLASSIFICATION ACCURACIES ON THE INDIAN PINES 

HYPERSPECTRAL DATA SET FOR PER-PIXEL SVM AND WITH THE 

REGION PV METHOD FOR DEFINIENS 8.0 (D8), SEGEN, HSWO, AND 

THE REFINED VERSION OF HSEG. HSEG WAS PERFORMED WITHOUT 

SMALL REGION MERGE ACCELERATION. CLASSIFICATION ACCURACIES 

IN PERCENTAGE IN TERMS OF OA, AA, AND KAPPA COEFFICIENT (). 

 
SVM D8+PV 

SEGEN+ 

PV 
HSWO+PV 

HSeg+PV 

Swght = 0.1 

# of region 
objects 

NA 475 1074 5323 4057 

OA 76.41 85.27 87.47 85.33 86.89 
AA 80.77 91.57 92.31 86.31 89.83 

 72.92 82.92 85.51 83.07 84.84 

classification maps for the Washington DC Mall data set. 

These two classification maps look very similar. Fig. 6 shows 

the SEGEN+PV and HSeg+PV classification maps for the 

University of Pavia data set. The SEGEN+PV classification 

map is somewhat smoother than the HSeg+PV classification. 

Fig. 7 shows the SEGEN+PV and HSeg+PV classification 
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 (a) (b) 

Fig. 5. Classification maps for the Washington DC Mall 

hyperspectral data set. (a) PV of the SVM classification over the 

SEGEN segmentation. (b) PV of the SVM classification over the 

HSeg segmentation (refined version) with Swght = 0.1 and no small 

region merge acceleration. The color key is as in Fig. 2. 

maps for the Indian Pines data set. The SEGEN+PV 

classification has fewer small regions, due to its built-in 

methods for reducing the number of small regions. 

The classification results presented show that HSeg’s inte-

gration of nonadjacent region object aggregation in the best 

merge region-growing process can often improve the 

segmentation results over those produced by the HSWO 

approach which limits the region growing process to spatially 

 

  
 (a) (b) 

Fig. 6. Classification maps for the University of Pavia data set. 

(a) PV of the SVM classification over the SEGEN segmentation. 

(b) PV of the SVM classification over the HSeg segmentation 

(refined version) with Swght = 0.3 and with small region merge 

acceleration. The color key is as in Fig. 3. 

 

   
 (a) (b) 

Fig. 7. Classification maps for the Indian Pines hyperspectral data set. 

(a) PV of the SVM classification over the SEGEN segmentation. 

(b) PV of the SVM classification over the HSeg segmentation 

(refined version) with Swght = 0.1 and without small region merge 

acceleration. The color key is as in Fig. 4. 

adjacent regions. On the other hand, these results do not 

demonstrate superiority in the comparison between HSeg, 

Definiens 8.0 and SEGEN. However, these results do show 

that HSeg is very competitive with these other image 

segmentation approaches for this type of application. It is 

interesting to see that simply adding nonadjacent region object 

merging to the best merge region-growing process improves 

the segmentation result to the point that the results are 

competitive with approaches like SEGEN and Definiens 8.0 

with their more elaborate merge control processes. 

 

VIII. THE UNIQUE NATURE OF THE HIERARCHICAL 

SEGMENTATONS PRODUCED BY HSEG AND RHSEG 

The key unique aspect of HSeg and RHSeg is the tight 

intertwining of region-growing segmentation, which produces 

spatially connected region objects, with nonadjacent region 

object aggregation, which groups sets of region objects 
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 (a) (b) 

   

 (c) (d) 

Fig. 8. (a) True color rendition of a 768×768 pixel portion of an 

Ikonos image from over Baltimore, MD. (b) Colorization of the 

HSWO segmentation result at region mean dissimilarity 0.45 (3600 

region objects). (c) Colorization of the HSeg segmentation at region 

mean dissimilarity 0.45 (7,521 region objects grouped into 11 region 

classes). (d) Region class “10” highlighted from the HSeg result at 

region mean dissimilarity 0.41. 

 

together into region classes. No other practical operational 

image segmentation approach has this tight integration of 

region-growing object finding with nonadjacent region 

aggregation. The advantage of this tight intertwining is 

demonstrated in the comparison image segmentation results 

from the refined HSeg versus HSWO. Figs. 8(a)-(c) shows a 

true color rendition of a 768 × 768 portion of an Ikonos image 

from over Baltimore, MD, a colorization of the region object 

label map from a HSWO result, and a colorization of the 

region class label map from a corresponding HSeg result. 

HSWO and HSeg were both run with the BSMSE
½
 

dissimilarity criterion until a region mean global dissimilarity 

of 0.45 was reached. HSeg used Swght = 0.25. 

At this level of segmentation detail, a display of the region 

mean image for either the HSWO or HSeg result (not shown) 

looks very similar to the original image. However, the HSeg 

segmentation provides a much more compact description of 

the data through just 11 region classes. The HSWO 

segmentation requires 3600 region objects to represent the 

data. HSeg's tight integration of region-growing object finding 

and nonadjacent region aggregation enables a compact but 

high quality representation of the image information content. 

Also, the natures of the underlying image segmentations are 

very different. For example, the waters of the Baltimore Inner 

Harbor are fragmented into several region objects in the 

HSWO result while these same waters of consolidated into 

just one region class in the HSeg result. The HSeg result also 

aggregates spatially disjoint but spectrally similar region 

objects into single region classes, allowing the identification 

of spatially disjoint areas of similar ground cover, such as 

evident for the green colored region class in Fig. 8(c) that 

corresponds to vegetation. No such direct association is 

possible in the HSWO result shown in Fig. 8(b). Other similar 

region class associations are also evident in an inspection of 

the HSeg result of 8(c), such as building roofs and the road 

network. 

HSeg's unique capability of automatically grouping of 

spatially connected region objects into region classes provides 

additional advantages in utilizing HSeg segmentations in 

OBIA applications. Consider the patterning of dark roofs 

evident throughout Fig. 8(a). These roofs are labeled as region 

class “10” in the HSeg segmentation result at region mean 

dissimilarity 0.41, which is highlighted in white in Fig. 8(d). 

Note a certain regularity of the roof pattern to the southeast, 

east and north of Patterson Park. This area is generally an 

older residential area, with a few businesses interspersed. The 

roof pattern to the southwest and west of Patterson Park 

appears somewhat different. This area has a denser 

concentration of businesses and apartment complexes. Pixel-

based analysis could never detect this difference in spatial 

patterning whereas detection of such spatial patterning should 

be possible with an OBIA approach. The assumption made 

here is that if the spatial pattern detection system built into the 

human eye-brain system can detect it, a sufficiently 

sophisticated OBIA approach should also be able to detect it. 

It is the capability of HSeg to find region objects and group 

nonadjacent region objects into region classes that makes 

patterns like these roof patterns accessible to OBIA. 

Preliminary work investigating utilizing a graph-based 

knowledge discovery system to identify such patterns was 

reported in [27] and [28]. HSeg could also be utilized as an 

input to an approach for classifying patterns of land cover 

described recently in [29]. 

 

IX. SUMMARY AND DISCUSSION 

This paper has presented HSeg as a form of best merge 

region-growing segmentation that tightly integrates nonadja-

cent region object aggregation with the usual region object 

growing. Presented also is RHSeg, the recursive approxima-

tion of HSeg, as an approach for reducing the computational 

requirements of nonadjacent region object aggregation in 

HSeg. RHSeg recursively subdivides the image data into sub-

sections that can be efficiently processed and subsequently 

recombines the segmentation results from the subsections. 

Since this recombination of segmentation results from the 

subsections can sometimes lead to processing window arti-

facts, RHSeg includes a processing window artifact elimina-

tion step, which is fully described in this paper for the first 

time in the open literature. 

This paper has also introduced a new refined version of 

HSeg which reduces the computational requirements of the 

original version of HSeg by limiting the region object 

aggregation step to regions containing a dynamically varied 

minimum number of pixels. We show that the refined version 
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of HSeg produces similar segmentation results in similar 

computation times to those produced by RHSeg incorporating 

the original version of HSeg. However, RHSeg utilizing the 

refined version of HSeg is still needed to process large images 

due to its lower needs for computer memory and the 

availability of a straightforward parallel implementation. We 

also showed that incorporating the refined version of HSeg 

into the RHSeg processing scheme improved the flexibility of 

RHSeg in performing segmentation of large images. 

We then compared the effectiveness of HSWO and HSeg to 

two other image segmentation approaches using a PV region-

based classification approach on three quite different 

hyperspectral image data sets, fed by a pixelwise classification 

using the SVM classifier. We found the refined version of 

HSeg to be competitive with other image segmentation 

approaches (Definiens 8.0 and SEGEN) for this type of 

application and often superior to the HSWO approach. 

Finally, we have noted the unique nature of the HSeg hier-

archical segmentations and have examined the potential 

advantages of utilizing HSeg in OBIA. HSeg's automatic 

grouping of spatially connected region objects into region 

classes provides unique advantages for OBIA applications. 

This grouping leads to high spatial fidelity in the image 

segmentation results and directly leads to opportunities for 

developing analysis approaches for detecting spatial 

patterning. 

We encourage others to experiment with HSeg and RHSeg 

in their image analysis applications. Examples of recent earth 

science projects funded by NASA that utilize HSeg and 

RHSeg are reported on in [30] and [31]. A full featured 

demonstration version of the latest version of HSeg/RHSeg 

may be obtained directly from the corresponding author or 

through the web site:  

http://ipp.gsfc.nasa.gov/ft_tech_rhseg.shtm. 

Certain aspects of this software are subject to patent Nos. US 

6,895,115 B2 and 7,697,759 issued by the United States Patent 

and Trademark Office. 

 

APPENDIX A 

DISSIMILARITY CRITERION 

Our implementation of HSWO, HSeg and RHSeg offers a 

number of criteria for evaluating the dissimilarity of one 

region versus another. For a complete list see [18]. We briefly 

describe here the two dissimilarity criteria used in tests 

reported in this paper. 

One dissimilarity criterion is based on minimizing the 

increase of mean squared error between the region mean 

image and the original image data. The BSMSE between 

regions Xi and Xj with region mean vectors, ui and uj, and 

region size (number of pixels) ni and nj is given by 
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where ui = (i1, i2, …, iB)
T
 (similarly for uj). To keep the 

dissimilarity criteria dimensionality consistent with other 

criterion utilized by HSWO, HSeg and RHSeg, the square root 

of this criterion (BSMSE
½
) is used [18]. 

The second dissimilarity criterion selected for use in this 

study is the SAM criterion, which is widely used in hyper-

spectral image analysis [32]. This criterion determines the 

spectral similarity between two spectral vectors by calculating 

the “angle” between the two spectral vectors. The spectral 

angle  between the region mean vectors, ui and uj, of regions 

Xi and Xj is given by: 
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Note that the value of the SAM criteria, (ui,uj), ranges from 

0.0 for the most similar vectors up to /2 for the most 

dissimilar vectors. 

We have found that segmentations produced using the SAM 

criterion and certain other criterion, such as those based on 

vector norms, tend to contain many small regions (see [33]). 

These small regions can cause difficulties in HSeg because of 

the need to consider them in the region aggregation step (as 

discussed in Section VI). Because of this, a bias factor was 

introduced to encourage or accelerate the merging of small 

regions into larger ones. Let Пmin be a user settable parameter 

used in calculating this merge acceleration factor, MA, which is 

multiplied times the dissimilarity criteria. For two regions of 

size (number of pixels) n1 and n2, let Пi = min(ni, Пmin) for i = 

1,2. Then 
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Note that, if both n1 and n2  Пmin, MA = 1.0. This factor 

accelerates the merging of regions with size less than Пmin into 

larger regions. For the SAM and several other criteria, the 

default value of Пmin is set at 200 for the original versions of 

HSeg and RHSeg. However, since the mean squared error and 

entropy based criterion have a natural bias against small 

regions, the default value for Пmin is set at 0 (i.e., making MA 

always = 1.0) for those criterion. 

As noted earlier, the refined version of HSeg also includes 

an option for small region merge acceleration. In this case 

when this option is selected, the merge acceleration factor, MA, 

is employed when one of the regions has size less than Pmin. 

However, instead of setting Пmin = Pmin, Пmin is set equal to the 

maximum of П1 and П2 in eq. (A-3). This modification 

reduces the dissimilarity criteria updating necessary when the 

value Pmin changes. 

http://ipp.gsfc.nasa.gov/ft_tech_rhseg.shtm
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Fig. 9. Analysis flow of the RHSeg algorithm. Lr is determined as the number times the input image must be subdivided to achieve a small 

enough image size for efficient processing with HSeg. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. The analysis flow of the recursive function rhseg(L,X). Nmin is equal to ¼ the number of pixels in the subimage processed at the deepest 

level of recursion. 

APPENDIX B 

THE RHSEG ALGORITHM 

This appendix provides a description of RHSeg algorithm, 

including a full description of the processing window artifact 

elimination step that has not been published previously in the 

open literature. The analysis flow for RHSeg, which has been 

implemented for both 2- and 3-D data [17], is shown in Figs. 9 

and 10. 

RHSeg recursively subdivides the image data X into smaller 

subsections, and then applies HSeg to the smaller subsections 

of data. The number of times the image data is subdivided Lr 

depends on the size of the image data and the maximum 

desired size for the image subsection processed at the deepest 

level of recursion. For RHSeg utilizing the refined version of 

HSeg, the default for this subimage size is set to 1 048 576 

(=1024 × 1024) pixels. In addition, the number of subsections 

the image is divided into at each recursive level is adjusted to 

achieve near equal image dimensions at the deepest level of 

recursion. For example, for a 2-D image with 2048 columns 

and 4096 rows, the image is first subdivided into two 

subsections of 2048 columns and 2048 rows and then further 

subdivided into four subsections of 1024 columns and 1024 

rows. In this case Lr = 2. 

As noted in Fig. 10, the execution of HSeg is stopped at 

Nmin regions in the recursive function rhseg(L,X). Nmin is equal 

to ¼ the number of pixels in the subimage processed at the 

deepest level of recursion. In our example Nmin would equal 

(1024 × 1024/4 =) 262 144 regions. At the deepest level of 

recursion (i.e., L = Lr), HSeg is normally initialized with each 

image pixel labeled as a separate region. However, at the other 

levels of recursion, HSeg is initialized with the segmentation 

result from the previous step. 

Processing window artifact elimination is performed at all 

but the deepest level of recursion (see Fig. 10). This procedure 

is described as follows: 

1) For each region, identify other regions that may contain 

pixels that are more similar to it than the region that they 

are currently in. These regions are placed in a 

candidate_region_label set for each region. This is done 

by: 

a) scanning the processing window seam between 

sections processed at the next deeper level of 

recursion for pixels that are more similar (by a factor 

of Fseam) to the region existing across the processing 

window seam. 

b) identifying regions that have a dissimilarity between 

each other less than or equal to Fregion∙Tmax (Tmax is 

the maximum value of the merge threshold, T, 

encountered so far in HSeg). 

2) For each region with a nonempty 

candidate_region_label set, identify pixels in the region 

that are more similar by a factor of Fsplit to regions in the 

candidate_region_label set than to the region they are 

currently in. If Swght = 1.0, simply switch the region 

assignment of these pixels to the more similar region. 

Otherwise, split these pixels out of their current regions 

and remerge them through a restricted version of RHSeg 

(described in the text below). 

The default values of Fseam = 1.5, Fregion = 0.0 (no regions 

selected via this factor) and Fsplit = 1.5 work well for a wide 

range of images. 

In step 2 above, the regions that remain after the dissimilar 

pixels are split out retain information from the current level of 

recursion. This information is passed down to the deeper 

levels of recursion in the operation of the restricted version of 

RHSeg. 

In the restricted version of RHSeg used in step 2, HSeg is 

initially restricted to merges involving the pixels that were 

split out from their regions, the regions neighboring these 

split-out pixels, the region from which the pixel was split out 

from, and the regions in the candidate_region_label set of the 

Input 

image, X 

Determine Lr 

and set L= 0. 

Call rhseg(L,X) 

(Fig. 10) 

Execute 

HSeg (Fig. 1) 
End 

rhseg(L,X) L = Lr? 

Execute HSeg 

stopping at Nmin 

regions 

Subdivide X into equal 

subsections Xsub and 

call rhseg(L+1,Xsub) for 

each subsection 
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Xsub sections 
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Processing 
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region from which the pixels were split out from. Note that the 

existing regions that are not exclusively formed from split-out 

pixels retain global information from the highest level of 

recursion. HSeg is further restricted by considering pixels 

along the processing window boundaries to be “contagious,” 

and prohibiting merges between “contagious” pixels (or 

regions) and other pixels or regions. This “contagious” 

property is passed on to any pixel or region that attempts to 

merge with a “contagious” pixel or region. This “contagious 

pixel” idea was first advanced by Lee [34], [35]. These merges 

are performed until the largest merge threshold from the 

previous step is reached, the number of regions becomes less 

than or equal to Nmin, or no other merges can be performed 

(because all remaining regions formed entirely from split-out 

pixels are “contagious”). 

If the above stage of the restricted version of HSeg stops 

before the largest merge threshold from the previous step is 

reached, or before the number of regions becomes less than or 

equal to Nmin, the “contagious” property is set aside and region 

merging is continued until the largest merge threshold from 

the previous step is reached, or the number of regions becomes 

less than or equal to Nmin. 

Finally, if the number of regions equal to Nmin is not reached 

with the above restricted version of HSeg, the unrestricted 

version of HSeg is performed until the number of regions 

becomes less than or equal to Nmin regions. 

The reader may wonder why the “contagious pixel” idea is 

not used to prevent processing window artifacts in the 

execution of HSeg in RHSeg. This idea was tried, but this 

approach turned out to be unreliable because oftentimes so 

many pixels and regions would become “contagious” that the 

region-growing process would stall before Nmin regions could 

be achieved. This stalling commonly does occur in the 

restricted version of RHSeg described above. However, there 

is a safety valve provided in which the merging process may 

continue after the “contagious” property is set aside. 

It should be noted that the processing window artifact 

elimination step of RHSeg is invoked after the HSeg 

algorithm is performed until the number of regions reaches 

Nmin. This reduces the number of pixels that are split out in 

step 2 above by allowing a number of regions to merge 

together across the processing window seams. It also can be 

noted that, with appropriate values for Fseam, Fregion and Fsplit, 

the inclusion of the processing window artifact elimination 

step of RHSeg generally no more than doubles the processing 

time for RHSeg versus a version of RHSeg that does not 

include this step. 
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